فروشگاه فایل 4030

بزرگترین وبلاگ فروش فایل

فروشگاه فایل 4030

بزرگترین وبلاگ فروش فایل

ایده آل های خطی به ترتیب کوهن-مکوالی

چکیده G را یک نمودار غیرمستقیم ساده n راسی در نظر بگیرید و بگذارید برایده آل خطی مرتبطش دلالت کند مانشان می دهیم که تمام نمودارهای و تری G ، به ترتیب کوهن مکوالی هستند
دسته بندی ریاضی
فرمت فایل doc
حجم فایل 111 کیلو بایت
تعداد صفحات فایل 22
ایده آل های خطی به ترتیب کوهن-مکوالی

فروشنده فایل

کد کاربری 1024

ایده آل های خطی به ترتیب کوهن-مکوالی

چکیده- G را یک نمودار غیرمستقیم ساده n راسی در نظر بگیرید و بگذارید برایده آل خطی مرتبطش دلالت کند. مانشان می دهیم که تمام نمودارهای و تری G ، به ترتیب کوهن- مکوالی هستند ، دلیل ما بر پایه نشان دادن این است که دوگانه الکساندر I(G) ،خطی و ازمولفه است.
نتیجه ما فرضیه فریدی را که می گوید ایده آل درخت ساده شده به ترتیب کوهن- مکوالی، هرزوگ، هیبی، می باشد، وفرضیه ژنگ که می گوید یک نمودار وتری کوهن-مکوالی است اگر و تنها اگر ایده آل خطی اش در هم ریخته نباشد، را تکمیل می کند. ما همچنین ویژگی های دایره های مرتب کوهن- مکوالی را بیان می کنیم و نمونه‌هایی از گراف های مرتب غیروتری کوهن- مکوالی را هم ارائه می کنیم.

1-مقدمه
G را یک گراف ساده n راسی در نظر بگیرید پس G هیچ حلقه یا خطوط چندگانه ای پهن دو راس ندارد.) رئوس ومجموعه های خطی G توسط EG,VG را به ترتیب نشان دهید. ما ایده آل تک جمله ای غیر مربع چهارگانه با K که یک میزان است و جایی که را به G ارتباط می دهیم.ایده ال ایده آل خطی Gنامیده می شود.
توجه اولیه این مقاله ایده آل های خطی گراف های وتری است. یک گراف G وتری است اگر هر دایره طول یک وتر داشته باشد. اینجا اگر ،خطوط یک دایره طول n باشند، ما می گوییم که دایره وری یک وتر دارد اگر دو راس xj,xi در دایره به نحوی وجود داشته باشند که یک خط برای G باشند اما خطی در دایره نباشد.
ما می گوییم که یگ گراف G کوهن –مکوالی است اگر کوهن-مکوالی باشد. چنانکه هرزوگ، هیبی و ژنگ اشاره می کنند، طبقه بندی تمام گراف های کوهن-مکوالی شاید اکنون قابل کشیدن نباشند، این مسئله به سختی طبقه بندی کردن تمام مجموعه های ساده شده کوهن-مکوالی است.]9[.البته هرزوگ، هیبی و ژنگ در ]9[ ثابت کردند که وقتی G یک گراف وتری باشد،پس G در هر میدانی کوهن-مکوالی است اگر وفقط اگر به هم نریخته باشد.
ویژگی کوهن –مکوالی به ترتیب بودن، که شرایطی است ضعیف تر از کوهن-مکوالی بودن، توسط استنلی ]14[ در ارتباط با تئوری قابلیت جدا شدن غیرخالص معرفی شد.
تعریف 1-1- را در نظر بگیرید. یک M معیار B درجه دار کوهن –مکوالی به ترتیب نامیده می شود اگر یک تصفیه معین از معیارهای R درجه بندی وجود داشته باشد.


به نحوی که کوهن –مکوالی باشد، و ابعاد کرول خارج قسمت در حال افزایش باشند:


ما میگوییم یک گراف G کوهن-مکوالی به ترتیب است و در K اگر کوهن-مکوالی به ترتیب باشد. ما می توانیم به نتیجه هرزوگ، هیبی و ژنگ بر سیم البته با استفاده از این تضعیف شرایط کوهن-مکوالی. نتیجه اصلی ما فرضیه زیر است (که مستقل از خاصیت (K) است.
فرضیه 2-1 فرضیه 2-3.تمام گراف های وتری کوهن-مکوالی به ترتیب هستند.
بنابراین حتی گراف های وتری که ایده آل های خطی نشان در هم نریخته نیستند نیز هنوز یک ویژگی جبری را دارا هستند.فرضیه 2-3 همچنین حالت یک بعدی کار فردی در توده های ساده شده ]3[ را نیز عمومیت می بخشد.
مقاله ما به صورت زیر سازمان می یابد. در قسمت بعدی ، ما نتایجی از این ادبیات درباره دوگانگی الکساندر ودرباره گراف های وتری جمع می کنیم. در بخش 3،فرضیه 2.3 را ثابت می کنیم.
ما برخی از گراف های غیروتری در قسمت 4 را که دایره های کوهن-مکوالی را به ترتیب طبقه بندی می کنند بررسی می کنیم و در مورد برخی ازویژگی های گراف‌های شامل دایره های –n برای n>3 تحقیق می کنیم.
همچنین شرایط کافی را برای گرافی که نمی تواند کوهن-مکوالی به ترتیب باشد ،ارائه می کنیم.
2-اجزا مورد نیاز
درطول این مقاله، G بر یک گراف ساده روی رئوس n با مجموعه نقطه ای VG ومجموعه خطی EG دلالت می کند. ایده آل خطی ،جایی که را به G مربوط می سازیم.
گراف کامل در رئوس n که بر Kn دلالت شده است،گرافی است با مجموعه خطی ، یعنی گراف این ویژگی را دارد که خطی بین هر جفت رئوس وجود دارد. اگر x نقطه ای در G باشد باید بنویسیم N(x) که بر همسایه‌های x دلالت کند،یعنی آن رئوسی که خطی را با x شریکند. ما ابتدا باید به حالتی توجه کنیم که G یک گرافی وتری است.گراف های وتری ویژگی زیر را دارند:
لم 21- G,[6,7,12,15] را یک گراف وتری در نظر بگیرید، x را یک زیر نمودار کامل از G در نظر بگیرید.اگر ،پس نقطه ای به نام وجود داردکه زیرگراف به وجود آمده توسط مجموعه همسایه مربوط به x، یک گراف کامل باشد. این امر همچنین زیر نمودار به وجود آمده در را وادار می کند که یک زیر گراف کامل باشد.
یک پوشش راس گراف G یک زیر مجموعه از VG است به نحوی که هر خط G حداقل به یک راس A برخوردار داشته باشد. توجه کنیدکه ما هیچ وقت به داشتن یک راس مجزا در پوشش راس نیاز نداریم.
مثلا ، اگر ما گرافی در سه راس داشته باشیم و تنها خط موجود باشد، پس هر دو پوشش های راس هستند. پوشش های راس یک گراف G به دو گانه الکساندر مربوطند.
تعریف 2-2- I را یک ایده آل تک جمله ای غیرمربع در نظر بگیرید. دوگانه الکساندر غیرمربع ایده آل
است.

پس نتیجه ساده ای گرفته می شود:
لم 3-2- G را یک گراف ساده با ایده آل خطی در نظر بگیرید.پس

یک پوشش راس برای G است.

یک تجزیه درجه بندی شده آزاد حداقل به هر ایده آل همگون I از R مرتبط است.

که در آن R(j) بر معیار R به دست آمده از تغییر درجات R توسط j دلالت می کند.


الگوریتم STR کلی (تعمیم یافته)

داده ها پارامتر d مرتبه رگولاتور یعنی درجه R* ، و درجه S* را بدانیم چند مجموعه ای روبتگر Ao* به جای چند جمله ای C* که نامعلوم است (تقریب C*)
دسته بندی ریاضی
فرمت فایل doc
حجم فایل 176 کیلو بایت
تعداد صفحات فایل 25
الگوریتم STR کلی (تعمیم یافته)

فروشنده فایل

کد کاربری 1024

الگوریتم STR کلی (تعمیم یافته)

داده ها: پارامتر d مرتبه رگولاتور یعنی درجه R* ، و درجه S* را بدانیم. چند مجموعه ای روبتگر Ao* به جای چند جمله ای C* که نامعلوم است (تقریب C*)
چند جمله ایهای پایدار P* و Q*
سیگنالهای فیلتر شده زیر بایستی معرفی شوند:

گام 1 : تخمین ضرایب R* و S* بروش LS:

( C* : note)
گام 2 : سیگنال کنترل را از روی محاسبه می کنیم
تکرار گامهای فوق در هر پریود نمونه برداری
در صورت همگرایی تخمین : S* و R* گام بعدی با قبلی برابر است)

=

ویا:
فرم کلی در صورت عدم حذف همه صفرهای فرآیند
اتحاد (2) به شکل زیر نوشته می شود:
C*Q*=A*P*R'*+q-dB-*S* R'* از این رابطه بدست می آید.
و سیگنال کنترل می شود:

کنترل فید فوردوارد (پیشخور) – STR (دانستن دینامیک فرایند لازم است)کنترل پیشخور برای کاهش یا حذف اغتشاش معلوم بکار می رود. خود سیگنال فرمان می تواند برای STR ، یک اغتشاش معلوم فرض شود
مثالهایی از اغتشاش قابل اندازه گیری (معلوم): درجه حرارت و غلظت در فرایندهای شیمیایی درجه حرارت خارجی در کنترل آب و هوا – ضخامت کاغذ در سیستمهای milling machinc
مدل فرضی :
چند جمله ایهای ، S* و T* بایستی تخمین زده شوند و آنگاه:

مثال : تاثیر فیلتر کردن (همان فرایند مثالهای قبل را در نظر بگیرید) {رفتار الگوریتم تصمیم یافته توضیح داده می شود}
Y(t)+ay(t-1)=bu(t-1)+e(t)+ce(t-1)
مقادیر واقعی پارامتر : a = -0.9 ,b=3 , c=-0.3
فیلترها را بصورت زیر در نظر بگیرید

اتحاد: C * Q*=A*P*R'*+q-dB-*S*
در این مثال : از مدل فرآیند داریم
اتحاد

قانون کنترل:
R*P*=R'*P*B+*


فیلتر باید پیش فاز باشد که در نتیجه سیستم حلقه بسته بصورت پایین گذر فیلتر خواهد شد.
سئوال P1 و q1 را چگونه انتخاب کنیم؟
جواب: یک روش انتخاب بررسی اثر آنها بر روی واریانس y و u است. فرض کنید e(t) دارای واریانس 1 است.


حالت (a): no filtering P"q1=0


این حالت همان وضعیت کنترل حداقل واریانس است بدون هیچگونه فیلتر کردن .
حالت q1=-0.3 p1=0(b)

سه مبدا

الگوریتم STR کلی( تعمیم یافته):
داده ها: پارامترd، مرتبه رگولاتور یعنی درجه و درجه را بدانیم. چند جمله ای رویتگر ( بجای چند جمله ای که نامعلق است
( تقریب ) و چند جمله ای پایدار و سیگنالهای فیلترشده زیر بایستی معرفی شوند:
و
گام 1: تخمین ضرایب و به روش LS:

) Note: )
گام 2: سیگنال کنترل را از روی محاسبه می کنیم.
تکرار گامهای فوق در هر پریود نمونه برداری:
( گام بعدی با قبلی برابر است)
در صورت همگرایی تخمین:



و یا
فرم کلی در صورت عدم حذف همه صفرهای فرآیند اتحاد(2) به شکل زیر نوشته می شود: از این رابطه بدست می آید:
و سیگنال کنتر ل می شود ( مثال در پائین آمده نحوه انتخاب P,Q فیلتر ) کنترل فیدفور وارد( پیشخور)STR-( دانستن دینامیک فرآیند لازم است)
کنترل پیشخوری برای کاهش یا حذف اغتشاش معلوم بکار می رود. خود سیگنال فرمان می تواند برای STR ، یک اغتشاش معلوم فرض شود.
( مثالهایی از اغتشاش قابل اندازه گیری(معلوم): در جه حرارت و غلظت در فرآیندهای شیمیایی در جه حرارت خارجی در کنترل آب و هوا- مشخصات کاغذ در سیستمهایmilling machine ).
مدل فرضی:
اغتشاش معلوم
چند جمله ایهای و و بایستی تخمین زده شود و آنگاه:

مثال: تأثیر فیلتر کردن( همان فرآیندهای مثالهای قبل را در نظر بگیرید) (رفتار الگوریتم تعمیم یافته توضیح داده می شود.)

مقادیر پارامتر: ، ،


بی نظمی (chotic)

بی‌اختیار بودن (مثل حالتهایی که به همان حالتهای نهایی BUT منجر می شود و حالت نهایی برای تغییرات کوچک که با حالت نخستین بسیار متفاوت است)
دسته بندی ریاضی
فرمت فایل doc
حجم فایل 241 کیلو بایت
تعداد صفحات فایل 13
بی نظمی (chotic)

فروشنده فایل

کد کاربری 1024

بی نظمی (chotic)

بی نظمی را با اتفاقی بودن اشتباه نگیرید :

ویژگی های موضوعات اتفاقی :
1-تجدیدنشدنی و غیرقابل تولید دوباره
2-غیرقابل پیشگویی

ویژگیهای سیستم های بی نظم :
1-بی‌اختیار بودن (مثل حالتهایی که به همان حالتهای نهایی BUT منجر می شود و حالت نهایی برای تغییرات کوچک که با حالت نخستین بسیار متفاوت است)
2-بسیار مشکل یا غیرممکن بودن برای پیشگویی کردن
مطالعه سیستم های بی نظم اکنون یکی از رشته های موردتوجه و محبوب فیزیک است که در این زمینه تا قبل از اینکه کامپیوتر بتواند پاسخگوی مشکلات باشد اطلاعات کمی وجود داشت .
بی نظمی در خیلی از سیستم های فیزیکی دیده می شود برای مثال :
1-دینامیک سیالات (هواشناسی)
2-بعضی واکنشهای شیمیایی
3-لیزرها
4-ماشینهایی که می تواند با سرعت بالا ذره های ابتدایی را بسازد (شتابدهنده ها)

شرایط لازم و ضروری برای سیستم های بی نظم :
1-این سیستم ها دارای 3 متغیر مستقل دینامیکی اند
2-معادلات حرکت یا مسیر حرکت که غیرخطی می باشند
از معادلات یک آونگ که دارای حرکت میرا می باشد برای شرح دادن و ثابت کردن طرحهای بی نظمی استفاده می شود که دارای معادلات حرکت به صورت

می باشد . ما بجای این از یک شکل بدون بعد با معادله

استفاده می کنیم .
متغیرهای دینامیکی در معادله بالا عبارتند از t و و و دوره غیرطولی .
ما قبلاً دیدیم که آونگ فقط برای نمادهای q و و بی نظم است که از این موضوع در مثالهای زیر استفاده می کنیم .
برای مشاهده آغاز بی نظمی (وقتی که کاهش یافته) به مسیر حرکت سیستم در مرحله ای از فضا و فاصله گرفتن ذرات از هم توجه می کنیم که یکدفعه به صورت زودگذر محو می شوند . توجه کنید دوره دو برابر یا مضاعف بدست آمده قبل از آغاز بی نظمی ها است .
حالت منحنی های فضایی که دیدیم دومین مرحله از تمام سه مرحله‌ی حالتهای فضایی است که به طور کامل آونگ را توصیف می کند . این طرح ها جزئیات پیچیده سطح بی نظم آونگ را پنهان می کنند .
قسمت PoinCare قسمتی از سومین مرحله فضایی در یک قاعده ثابت است . این ها آنالوگهایی برای دیدن پیشرفت حالت فضایی حالت آونگ می باشد که یک قسمتی از یک دوره با نیروی محرک می باشد . تناوب مسیر حرکت در یک مرحله انجام می شود و تناوب مضاعف شدن نیرو و نیز در 2 مرحله انجام می شود .
Attractors : سطوحی که آونگ در حالت حرکت در فضا از آن پیروی می کند و بعد از مسیر زودگذر ضعیف می شود .
یک Attractors در یک آونگ ثابت (بدون بعد حرکت) دارای یک نکته خاصی می‌باشد که می باشد . یک Attractors تناوب آونگ یک خط منحنی می‌باشد که در اولین مرحله و سومین مرحله در فضای حرکت می باشد)
Attractor بی نظم گاهی Attractor قوی نامیده می شود که در این حالت اندازه ها بین 2 تا 3 می باشد ( ) .
اندازه و گنجایش یک مربع و خط

به عنوان مثال دستگاه Cantor تشکیل شده توسط پردازش interactive اندازه کسری یک Attractor بی نظم به دلیل حساسیت زیاد آن از حالتهای نخستین می باشد .
توانها Lyapunov اندازه گیری هستند از میزان متوسط واگرایی nigh bouring مسیر گلوله در یک Attractor بدست می آید .


مبحث بردارها

تساوی در بردار موازی، هم جهت و هم طولی دو بردار به تساوی آن دو می‌انجامد
دسته بندی ریاضی
فرمت فایل doc
حجم فایل 420 کیلو بایت
تعداد صفحات فایل 50
مبحث بردارها

فروشنده فایل

کد کاربری 1024

مبحث بردارها

بردارها:
تساوی در بردار: موازی، هم جهت و هم طولی دو بردار به تساوی آن دو می‌انجامد.
مجموع دو بردار : روش متوازی الضلاع
روش مثلثی
خواص بردارها:
شرکتپذیری:
بردار صفر: انتها و ابتدای بردار بر هم منطبق است. و با o نشان می‌دهیم.
برای هر بردار دلخواه داریم
قرینه برای یک بردار: اگر بردار معلومی باشد برای برداری با همان اندازه و جهت مخالف آن قرنیه نام دارد و با مشان داده می‌شود.
تفاضل دو بردار: تفاضل دو بردار را بصورت زیر تعریف می‌کنیم:

تذکر: اگر بردار و اسکالر معلوم باشند حاصلضرب است. یعنی برداری با همان جهت ولی برابر طویلتراز اگر و برداری مختلف الجهت با ولی برابر طویلتر از اگر .
برداریکه: هر برداری به طول واحد را یک برداریکه گوئیم. اگر بردار نا صفر باشد یک بردار یکه است.

زاویه بین دو بردار: منظور از زاویه بین دو بردار ناصفر که با نشانداده می‌شود یعنی زاویه‌ای که باید بچرخد تا جهتش با جهت یکی شود.
°
°
°
ضرب اسکالر( ضرب نقطه‌ای یا داخلی)
منظور از حاصلضرب اسکالر دو بردار که با نشان‌داده می‌شود یعنی عدد:
زاویه بین دو بردار را می‌توان از به یا از به سنجید. زیرا و
تذکر: 1.
2.

3. حاصلضرب صفرا ست اگر تنها اگر همچنین بردار صفر بر هر برداری عمود است.
مثال: مثال : اگر خط جهت دار و بردار معلوم باشد منظور از تصویر اسکالر روی L که به صورت نوشته می‌شود.
یعنی:
بطور کلی با معلوم بودن دو بردار منظور از تصویر اسکالر روی یعنی

قضیه: اگر و آنگاه :
نتیجه:
مثال : اگر بردار آنگاه:
هر برداری در ضرب شود مؤلفه اول بدست می‌آید و اگر در ضرب شود مؤلفه بدست می‌آید:


تذکر1:

آنگاه
2.

مثال: و را در صورتیکه با هم زاویه ° 60 بسازند. را بیابید.


ضرب برداری( خارجی)
برداری است که بر صفحه دو بردار عمود است.
منظور از حاصلضرب خارجی دو بردار که با نشان داده می‌شود یعنی بردار بطوریکه:
1- اندازة C برابر است با:
2- بر صفحه عمود است و در جهت حرکت یک پیچ( راست دست) ک تیغه‌اش از به باندازه می‌چرخد نشان داده
تذکر: هرگاه یا یا آنگاه
مساحت متوازی‌الضلاع ارتفاع قاعده
با توجه به فرمول قبل و شکل بالا نتیجه می‌‌گیریم که مساحت متوازی‌الضلاعی که توسط بردارهای و ساخته می‌شوند با ضرب خارجی برابر است.
و مساحت مثلث ساخته شده توسط دو بردار قبل نصف مقدرا قبلی است .
مساحت مثلث
تذکر: حاصلضرب خارجی با معکوس شدن و ترتیب بردارهای تغییر علامت می‌دهد.


مثال هرگاه . بردارهای متعاعد یک، باشند.

تذکر :1

2

3-ضربهای برداری شرکت‌پذیر نیستند.
قضیه: هرگاه :

آنگاه

مثال: مساحت مثلث به راسهای:
و و را بیابید.







* ضربهای سه تایی از بردارها
حاصلضرب سه تایی را در نظ بگیرید واضح است که:


که درآن مساوی ارتفاع(h) متوازی سطوح پوشیده بوسیلة بردارهای است و چون مساحت قاعده متوازی‌الضلاع است پس متوازی‌الضلاع برابر حجم متوازی‌السطوح است.
قضیه:‌هرگاه‌ ‌و ‌،‌ آنگاه

مثال: ثابت کنید

* صفحه:
یک صفحه بردار ناصفر عمود بر صفحه بطور منحصر بفرد مشخص می‌شود بردار n قائم بر صفحه نامیده میشود.
قضیه: هر صفحه معادله‌ای به شکل دارد که در آن A,B,C همگن صفر نیستند بر عکس هر گاه C,B,A همگی صفر نباشند هر معادله به شکل (1) معادله یک صفحه را مشخص می‌کند.
معادله صفحه‌ای که از نقطة میکند و بردار قائم آن است عبارتست از
مثال: بازای دو نقطه معلوم:


صفحه مابر عمود بر خط گذرنده از رابیابید:

صفحه P به معادله عبارت است از:

مثال: معادله صفحه‌ای و موازی دو بردار و و را محاسبه کنید.
مثال : معادله صفحه گذرنده از نقاط و و عمود بر صفحه باشد را بدست آورید.



N عمود بر صفحه مورد نظر


* خطوط در
خط ما با یک نقطه معلوم روی L و بردار دلخواه موازی L بطور مختصر به فرد مشخص میشود فرض کنید: نقطه دلخواهی در باشد در اینصورت هر گاه باشد یعنی که t یک اسکالر است.




معادلات پارامترهای خط



معادله متعارف خط L
با معادله خطی که از نقطه می‌گذرد و با بردار u موازی است.
تذکر:
اگر یکی از مخرجهای c,b,a در معادله متعارف صفر باشد صورت نیز باید صفر باشد مثلاَ اگر ، معادله خط بصورت زیر نوشته می‌شود.

مثال: معادله خط گذرانده از نقطه موازی خط
حل :

مثال:
فصل مشترک دو صفحه
را بدست آورید:






مثال:
معادله خط گذرنده از دو نقطه: ،
حل :
مثال :
ثابت کنید خط: و فصل مشترک صفحات و موازی‌اند:
و
حل :
بردار فصل مشترک

* توابع برداری:
در این فصل با ترکیب حساب دیفرانسیل انتگرال و بردارها مطالعه حرکت اجسام در فضا می‌پردازیم برای این منظور مؤلفه‌های عددی بردار شعاعی از مبدأ تا جسم را توزیع مشتق‌پذیری از زمن فرض کنیم و به این ترتیب بردارهای جسم را توصیف می‌کنند بدست میآوریم:
بردار شعاعی
از مبدآ تا نقطه که مکان زیر را در لحظه t از حرکتش در فضا بدست می‌آوریم.
* مشتق یک تابع برداری:
اگر و و توابعی با مقادیر حقیقی باشند از t باشند و بردار

یک تابع با مقادیر برداری از t باشد بردار مشتق F نسبت به t می‌باشد مانند حالت حرکت در صفح طول بردار بسرعت، مقدار سرعت جسم و جهت بردار سرعت جهت حرکت است.
مثال: بردار مکان یک جسم متحرک در لحظه t را مشخص می‌کند.
در مقدار سرعت و جهت ر مشخص کنید در چه لحظه‌ای در صورت وجود سرعت و شتاب جسم بر هم عمودند.

جهت سرعت


در لحظه شتاب و سرعت بر هم عمودند.
* قاعده زنجیره‌ای:
اگر مکان ذره‌ای باشد که روی یک مسیر در حرکت است و اگر با قرار دادن تابعی از بجای متغیرها را عوض کنیم مکان ذره تابعی از S می‌شود داریم:


تحقیق آشنایی با ریاضیات

آشنایی با ساختمان منطقی جمله هایی که مطالب ریاضی بوسیله آنها بیان می شوند مستلزم مفاهیم گزاره، گزاره نما، و اسم نماست
دسته بندی ریاضی
فرمت فایل doc
حجم فایل 94 کیلو بایت
تعداد صفحات فایل 23
تحقیق آشنایی با ریاضیات

فروشنده فایل

کد کاربری 1024

آشنایی با ریاضیات

مقدمه: آشنایی با ساختمان منطقی جمله هایی که مطالب ریاضی بوسیله آنها بیان می شوند مستلزم مفاهیم گزاره، گزاره نما، و اسم نماست. این مفاهیم که بخشی از منطق ریاضی مقدماتی محسوب می شوند می توانند مفاهیم و احکام ریاضی را قابل فهم و قابل توضیح نمایند. در عصر حاضر ایفای نقش منطق ریاضی در توجیه و قابل انتقال نمودن مفاهیم در پیشرفت و تکامل کامپیوتر بر هیچکس پوشیده نیست.
2.1 حساب گزاره ها
1.2.1 تعریف: گزاره جمله ای خبری است که یا راست است یا دروغ اگرچه راست یا دروغ بودن آن معلوم نباشد.
برای هر گزاره یک ارزش راستی یا دروغی یا مختصراً یک ارزش قائل می شویم. مثلاً هر یک از جملات«عدد 3 فرد است»،«عدد 6 زوج است» و« اصم است» گزاره هستند. هر یک از گزاره های اول و دوم راست هستند ولی راست یا دروغ بودن گزاره سوم یا مقدمات کنونی، برایمان معلوم نیست ولی در هر حال یا راست است یا دروغ.گزاره ها بطورکلی به سه دسته تقسیم می شوند: گزاره شخصی، گزاره کلی و گزاره جزئی( یا وجودی) نوع اول گزاره ای است که از شیء معینی خبر می دهد. و در این بخش مورد بحث ماست. نوع دوم و سوم را در بخش آینده تعریف و بررسی خواهیم کرد.
از ترکیب گزاره ها گزاره های مرکب حاصل می شود این عمل با رابطهای گزاره ای امکان پذیر است.
2.2.1 رابطهای گزاره ای: گزارها را با حروف p ، q ،v ،s و یا با حرف اندیس دار نظیر ، ،... نشان می دهیم و هر نوع ترکیبی از آنها با الفاظ زیر که رابطهای گزاره ای نامیده می شوند امکان پذیر است.
«چنین نیست که»،«و»،«یا»،« اگر»،« اگر و فقط اگر»
علایم ~ ، &، ، ( یا )، ( یا ) نیز به ترتیب برای این رابط ها بکار خواهند رفت. اینک به توضیح آنها می پردازیم:
3.2.1 نقیض: اگر Pگزاره ای باشد«چنین نیست کهP» را نقیض P می گوییم و با علامت ~P نشان میدهیم. علامت ~ را ناقص و گزاره ای را که ناقص در آن عمل می کند دامنة عمل ناقص می نامیم. پیداست که اگر گزاره ای راست(دروغ) باشد نقیض آن دورغ( راست) است.
بعنوان مثال نقیض گزاره«6 عدد اول است» گزارة«چنین نیست که 6عدد اول است.» و گزاره«6 عدد اول نیست» خواهد بود.
4.2.1 ترکیب عطفی: اگر pو q دو گزاره باشد گزاره«p,q » را ترکیب عطفی p با q می گوییم و با علامت نشان میدهیم. علامت& را عاطف و p وq را مؤلفه های
عاطف نامیم. ترکیب عطفی فقط و فقط وقتی راست است که هر دو مؤلفه آن گزاره های راستی باشند.
از الفاظی که از نظر منطقی مترادف عاطف است لفظ« ولی= اما» است مثلاً گزاره«6 زوج است ولی اول نیست» به معنی« 6 زوج است و 6اول نیست» خواهد بود که البته گزاره ای راست است.
5.2.1 ترکیب فصلی: اگرp وq دو گزاره باشند گزارة«p یاq » را ترکیب فصلی p با q نامیده به علامت p v q نشان میدهیم. این گزاره فقط و فقط وقتی دروغ است که هردو مؤلفه آن دروغ باشند. توجه کافی به تفاوت این« یا» که یاء منطقی نامیده می شود با لفظ عادی« یا» که در استعمال عادی برای ترکیب گزاره ها بکار میرود مبذول دارید. در استعمال عادی لفظ«یا» گزارة ترکیب شده فقط وفقط وقتی راست است که یکی از مؤلفه ها راست و دیگری دروغ باشد این نوع«یا» را یاء مانع جمع می نامیم.
در منطق لفظ«یا» همواره به معنی منطقی بکار می رود و «یای» مانع جمع را با تکرار لفظ«یا» و نیز با لفظ« الا» مشخص می کنند. مثلاً گزاره های
« یا 5 فرد یا 5ز وج است»
« 5 فرد است والا زوج است»
به یک معنی هستند که مشخص کننده یای مانع جمع است.
6.2.1 ترکیب شرطی: اگر p و q دو گزاره باشند گزارة« اگر p آنگاه q » را ترکیب شرطی p باq می نامیم و آنرا به علامت ( یا ) نشان می دهیم.
در اینجا مؤلفه p مقدم و مؤلفه q تالی گفته می شود . ترکیب شرطی فقط وقتی دروغ است که pگزارة راست و q گزارة دروغ می باشد.
تذکر1: ارزشهای گزارة عطفی و گزاره از ترتیب مؤلفه ها مستقل است ولی ارزش گزارة شرطی چنین نیست، یعنی ممکن است راست ولی دروغ باشد و یا بالعکس دروغ و راست باشد
تذکر 2: بیان ترکیب شرطی« اگر p آنگاه q » در ریاضیات و نیز در زبان عادی به صورت های متنوعی امکان پذیر است که عبارتند از:
اگر p ، q ؛
هرگاه p آنگاه q ؛
در حالتی که p ، q ؛
q اگر p ،
q به شرطی p ؛
P و فقط وقتی که q ؛
P شرط کافی برای q است؛
q شرط لازم برای p است ؛
شرط کافی برای q آن است که p ؛
شرط لازم برای p آن است که q ؛
P مستلزم q است؛
q از p لازم می آید؛
.
7.2.1 ترکیب دو شرطی : گزارة
« اگر p آنگاه q و اگر q آنگاه p » (1)
ترکیب عطفی دو گزارة شرطی و است که می توان آن را به صورت زیر
نوشت:


تاریخچه اندازه گیری در جهان

سابقه اندازه گیری به عهد باستان باز می گردد و می توان آن را به عنوان یکی از قدیمی ترین علوم به حساب آورد
دسته بندی ریاضی
فرمت فایل doc
حجم فایل 48 کیلو بایت
تعداد صفحات فایل 10
تاریخچه اندازه گیری در جهان

فروشنده فایل

کد کاربری 1024

تاریخچه اندازه گیری در جهان


سابقه اندازه گیری به عهد باستان باز می گردد و می توان آن را به عنوان یکی از قدیمی ترین علوم به حساب آورد .
در اوایل قرن 18 جیمز وات (JAMES WATT) مخترع اسکاتلندی پیشنهاد نمود تا دانشمندان جهان دور هم جمع شده یک سیستم جهانی واحد برای اندازه گیریها به وجود آورند . به دنبال این پیشنهاد گروهی از دانشمندان فرانسوی برای به وجود آوردن سیستم متریک (METRIC SYS) وارد عمل شدند .
سیستم پایه ای را که دارای دو استاندارد یکی «متر» برای واحد طول و دیگری «کیلوگرم» برای وزن بوده ، به وجود آوردند . در این زمان ثانیه (SECOND) را به عنوان استاندارد زمان (TIME) و ترموسانتیگراد را به عنوان استاندارد درجه حرارت مورد استفاده قرار می دادند .
در سال 1875 میلادی دانشمندان و متخصصات جهان در پاریس برای امضاء قراردادی به نام پیمان جهانی متریک (INTERNATIONAL METRIC COMVENTION) دور هم گرد آمدند . این قرارداد زمینه را برای ایجاد یک دفتر بین المللی اوزان و مقیاسها در سورز (SEVRES) فرانسه‌ آماده کرد. این مؤسسه هنوز به عنوان یک منبع و مرجع جهانی استاندارد پابرجاست .
امروزه سازندگان دستگاههای مدرن آمریکایی ، دقت عمل استانداردهای اصلی خود را که برای کالیبراسیون دستگاه های اندازه گیری خود به کار می برند ، به استناد دفتر
استانداردهای ملی (N.B.S)تعیین می نمایند .
لازم به یادآوری است دستگاه های اندازه گیری و آزمون به دلایل گوناگون از جمله فرسایش ، لقی و میزان استفاده ، انحرافاتی را نسبت به وضعیت تنظیم شده قبلی نشان می دهند .
هدف کالیبراسیون اندازه گیری مقدار انحراف مذکور در مقایسه با استانداردهای سطوح بالاتر و همچنین دستگاه در محدوده «تلرانس» اصلی خود می باشد .

تعریف اندازه گیری :
اندازه گیری یعنی تعیین یک کمیت مجهول با استفاده از یک کمیت معلوم و یا مجموعه‌ای از عملیات ، با هدف تعیین نمودن تعداد یک کمیت .

صحت :
نزدیکی نتیجه انداره گیری یک کمیت را با میزان واقعی آن کمیت گویند ، این مقدار به صورت درصدی از ظرفیت کلی دستگاه می باشد .

رواداری :
حداکثر انحراف یک قطعه ساخته شده از اندازه خاص خودش را گویند .

دقت :
نزدیکی میزان تفاوت نتایج حاصل از چند اندازه گیری متوالی را مشخص می نماید . دقت دستگاه دلالت بر صحت دستگاه ندارد .

تکرارپذیری :
نزدیکی مقدار خروجیهای یک دستگاه در شرایطی که مقدار ورودی به دستگاه ، روش اندازه گیری شخص اندازه گیرنده ، دستگاه اندازه گیری ، محل انجام کار ، شرایط محیطی یکسان باشد .

دامنه و میزان تغییرات :
حداقل و حداکثر ظرفیت اندازه گیری یک دستگاه را محدوده آن دستگاه گویند .

خطای ثابت :
خطایی که به طور ثابت که در تمام مراحل دامنه اندازه گیری با دستگاه همراه می باشد که این خطا با کالیبره کردن دستگاه برطرف خواهد شد.

خطای مطلق :
نتیجه اندازه گیری یک دستگاه منهای مقدار واقعی اندازه برداشت شده را گویند .
تصحیح :
مقدار عددی که به نتیجه تصحیح نشده یک اندازه گیری افزوده می شود تا یک خطای سیستماتیک فرضی را جبران نماید .

منابع خطای اندازه گیری :
تمام پارامترهای مراحل تولید و مشخصات نهایی تولید بایستی به منظور رعایت صحت استاندارد به وسیله Q.C ارزیابی شوند . طراح سیستم اندازه گیری بایستی روشی را اتخاذ نماید تا میزان خطا در خروجی دستگاهها کاهش یابد و حداکثر خطای باقی مانده شناسایی شوند .

خطاهای ناشی از دستگاه اندازه گیری :
عیوب باطنی دستگاه
استفاده غیرصحیح از دستگاه
اثرات بارگذاری دستگاه

خطاهای ناشی از مشاهده در اندازه گیری :
این نوع خطا شامل وضعیت های مختلف در هنگام خواندن دستگاه نشان دهنده با زوایای مختلف می باشد .


بررسی ویژگی های اجتماعی ، اقتصادی، فرهنگی دانش آموزان دخترانه کرج با سابقه شکست تحصیلی

شکست تحصیلی و خسارتهای ناشی از آن یکی از نقایص آموزشی بسیاری از کشورهای جهان سوم، و از آن جمله کشور ایران است
دسته بندی روانشناسی و علوم تربیتی
فرمت فایل doc
حجم فایل 89 کیلو بایت
تعداد صفحات فایل 69
بررسی ویژگی های اجتماعی ، اقتصادی، فرهنگی دانش آموزان دخترانه کرج با سابقه شکست تحصیلی

فروشنده فایل

کد کاربری 1024

بررسی ویژگی های اجتماعی ، اقتصادی، فرهنگی دانش آموزان دخترانه کرج با سابقه شکست تحصیلی


مقدمه:
شکست تحصیلی و خسارتهای ناشی از آن یکی از نقایص آموزشی بسیاری از کشورهای جهان سوم، و از آن جمله کشور ایران است .
کودکان ما ارزشمندترین سرمایه جامعه ، ظریف ترین و گرانبهاترین هدیه ای هستند که خداوند به عنوان امانت به ما سپرده است و از وظایف جامعۀ دست اندر کاران تعلیم تربیت کشور اسلامی است که از طریق مطلوبترین روشها و انسانی ترین رفتار کودکان جامعه (آینده سازان) را هدایت کنند در این راستا خانواده در آموزش و پرورش به عنوان محور و پایه اصلی می توانند انجام وظیفه کنند.
روشها و طرحهای متعدد برای همکاری پدر و مادرها با فرزندان وجود دارد که در شرایط مختلف به فراخور مال والدین قابل اجرا و بهره برداری می باشند میزان تصمیمات تراکم شغلی ، موقعیت اقتصادی ، اجتماعی پدر و مادرها از جمله عوامل تعیین کننده ای هستند که حدود و پیشرفت تحصیلی دانش آموزان را مشخص می سازند.

چکیده تحقیق :
علل و عوامل متعددی باعث ایجاد افت تحصیلی می شود که می توان آنها را به علل و عوامل خارجی و داخلی نظام آموزش و پرورش تقسیم کرد از آنجا که این عوامل تأثیر متقابل بر روی هم دارند نمی توانند جداگانه مورد تجزیه و تحلیل قرار گیرند ولی برای بهتر شناخته شدن این علل و عوامل و به منظور انجام یک تحقیق دقیق یک محدوده زمانی کوتاه ناگزیر به انتخاب یک بعد از علل و و عوامل ( یعنی علل و عوامل خارجی) افت تحصیلی شده این اهدافی که مورد بررسی و مطالعه قرار می گیرند عبارتند از:
اهداف کلی : هدف کلی این تحقیق ارائه پیشنهادات بر اساس نتایج بدست آمده جهت کاهش افت تحصیلی است
اهداف ویژه : هدف ویژه بررسی و شناسایی ویژگیهای اجتماعی ، اقتصادی و فرهنگی دانش آموزان دختر سال سوم راهنمایی دارای افت تحصیلی

موضوع: بررسی ویژگیهای اجتماعی ، اقتصادی، فرهنگی دانش آموزان دخترانه کرج با سابقه شکست تحصیلی
در رابطه با سوالات فوق الذکر 100 نفر از دانش آموزان دختر سال سوم راهنمایی فروردین که این تعداد از مدرسه راهنمایی از طریق نمونه گیری خوشه ای تصادفی انتخاب شدند و پرسشنامه 20 سوال در بین آنها توزیع گردیده است.
با توجه به توضیحات نتایج ذیل در این تحقیق به دست آمده است.
1- اکثر دانش آموزان مردود در خانواده هایی با سطح پایین اقتصادی زندگی می کردند.
2- اکثریت دانش آموزان مردود با سطح پایین اجتماعی و فرهنگی پایین قرار دارند.
3- اکثریت دانش آموزان مردود برنامه ریزی صحیحی جهت گذراندن اوقات فراغت خود ندارند.
4- اکثریت دانش آموزان مردود دوستان بی تفاوت نسبت به تحصیل ، اهل تفریح و یا ترک تحصیل کرده دارند.

بیان مسئله :
همگام با پیشرفت و افزایش سرانه آموزش و پروش نیز درمان افزایش است . مسلما هر جامعه ای که برای تعلیم و تربیت سرمایه گذاری می کند انتظار دارد که محصولی در راستای هدف نظام آموزش و پرورش بدست آورد تا این سرمایه گذاری عظیم از طریق تربیت انسانی جوابگوی احتیاجات جامعه گردد.
در این تحقیق تأثیر عوامل اقتصادی ، اجتماعی و فرهنگی مدارس مورد بررسی قرار می گیرد و در مورد مسائلی مثل فقر و محرومیت اقتصادی، نا مناسب بودن مکان زندگی نگرش والدین نسبت به تحصیل فرزندان توفیقاتی داده شده است.

فصل اول

معرفی تحقیق

تعریف موضوع تحقیق
ضرورت تحقیق
فایده تحقیق
اهداف کلی و ویژه تحقیق
محدودیت های تحقیق
تعریف واژه ها و اصطلاحات

معرفی تحقیق:
شکست تحصیلی و خسارتهای ناشی از آن یکی از نقایص آموزشی بسیاری از کشورهای جهان سوم، و از آن جمله کشور ایران است این مسئله به عوامل و موجبات گوناگون مربوط می شود که برای چاره جویی باید آنها را به دقت شناسایی و ارزشیابی کرد.
برخی از اقتصاد دانان معتقدند در بسیاری از کشورهای در حال توسعه آموزش رسمی بزرگترین صنعت و بزرگترین مصرف کننده درآمدهای عمومی است قراین و شواهد حکایت از آن دارد که کشور ما به علت تمرکز بیش از حد تصمیم گیری در نظام اداری و اجرایی ناسازگار بودن توان آموزش و پرورش با مقتضیات و نیازهای اقتصادی و اجتماعی کشور نیز رشد فزاینده تعداد دانش آموزان که از رشد سریع جمعیت سرچشمه می گیرد و سبب افزایش حجم مسئولیت دستگاه اجرایی آموزش و پرورش می گردد. مجموع شرایطی که با کمیت قلت بازدهی این صنعت یعنی خسارات اقتصادی ناشی از شکست تحصیلی می شود تشدید می گردد.
در این رابطه وضعیت اقتصادی و اجتماعی و فرهنگی خانواده دانش آموزان چگونگی گذراندن اوقات فراغت دانش آموزان و برنامه ریزی در جهت آن و گروه دوستان دانش آموزان را به عنوان ویژگیهای مردودین مورد توجه قرار دادیم.
امید است شناخت ویژگیهای مذکور در بررسی همه جانبه و ارائه پیشنهادات دستیابی به نتایج بتواند مسئولان و دست اندرکاران و برنامه ریزان جامعه آموزش و پرورش را به راه حلها رهنمون گردد.
تعریف موضوع تحقیق
موضوع مورد مطالعه در این تحقیق بررسی ویژگیهای اجتماعی و اقتصادی دانش آموزان
ویژگیهای اجتماعی ، اقتصادی و فرهنگی که در این تحقیق مد نظر است عبارتست از :
درآمد خانواده ، شغل خانواده ، تحصیلات والدین ، اشتغال دانش آموزان، وضعیت مسکن ، نحوه گذراندن اوقات فراغت دانش آموزان نقش دوستان ، رفتار والدین با دانش آموزان ، رفتار اعضای خانواده با دانش آموزان این تحقیق در صدد است که ویژگیهای اجتماعی، اقتصادی و فرهنگی دانش آموزان دختری که سابقه افت تحصیلی دارند را بررسی کند.
از افت تحصیلی تعاریف متعددی در کتابها ذکر شده است اما آنچه در تحقیق از این مفهوم مد نظر است مترادف دانستن آن با مفهوم پایه تکرار تحصیلی است .
در ذیل به چند تا از تعاریف افت تحصیلی اشاره می شود.
1- در تعریفی منظور از افت تحصیلی یا تکرار پایه تحصیلی عبارتست از تکرار پایه یک کلاس برای دانش آموزان که در معدل یک سال تحصیلی در همان کلاس پایه ای که در سال قبل به سر می برده به تحصیل ادامه می دهد و همان کاری را انجام می دهد که در سال گذشته نیز انجام داده است.
2- در تعریف دیگری منظور افت تحصیلی تکرار پایه تحصیلی بدین صورت بیان شده است که در نظامهای آموزشی که ارتقا از یک پایه به پایه دیگر از نظر سابقه و پیشرفت تحصیلی اجرا شرایط خاص پیش بینی شده در مقررات امتحانی را ایجاب می کند عدم توفیق گروهی از دانش آموزان در امتحان تکرار پایه و اتلاف ناشی از آنرا پدید می آورد.

فهرست:
مقدمه
چکیده تحقیق
بیان مسئله
فصل اول
تعریف موضوع تحقیق
ضرورت تحقیق
فایده تحقیق
اهداف کلی و ویژه تحقیق
محدودیت های تحقیق
تعریف واژه ها و اصطلاحات
- شرایط و عوامل اقتصادی
الف - فقرو محدودیت اقتصادی
ب- نامناسب بودن مکان زندگی
ج- نامناسب بودن امکانات بهداشتی
د-کارکردن کودکان
2- شرایط و عوامل فرهنگی واجتماعی
الف- فرهنگ و رابطه آن با آموزش و پرورش
ب- تفاوت زبان و فرهنگ بومی با زبان و فرهنگ عمومی
ج- نگرش محیط و خانواده نسبت به تربیت کودکان از نظر جنسیت آنها
3- شرایط عواملی خانوادگی
4- محدودیتهای محلی و جغرافیایی و توزیع نامناسب امکانات آموزشی
تحقیقات انجام شده پیرامون موضوع تحقیق
- روش تحقیق
- جامعه آماری
- نمونه آماری
- شیوه های جمع آوری اطلاعات و روش تجزیه و تحلیل اطلاعات
-جداول یافته های جامعه از پرسشنامه های دانش آموزان
-تحلیل یافته های دانش آموزان


برنامه خطی اعداد صحیح دوتایی (BILP)

یک مورد خاص ILP زمانی اتفاق می افتد که همه متغیرهای نمونه بتوانند فقط یک یا دو رقم 0 یا 1 را قبول کنند
دسته بندی ریاضی
فرمت فایل doc
حجم فایل 77 کیلو بایت
تعداد صفحات فایل 16
برنامه خطی اعداد صحیح دوتایی (BILP)

فروشنده فایل

کد کاربری 1024

برنامه خطی اعداد صحیح دوتایی (BILP)

یک مورد خاص ILP زمانی اتفاق می افتد که همه متغیرهای نمونه بتوانند فقط یک یا دو رقم 0 یا 1 را قبول کنند . چنین متغیرهایی متغیرهای دوتایی نامیده می شوند ، و نمونه ها ، برنامه ها ، برنامه های 1-0 یا برنامه های خطی اعداد صحیح دو تایی (BILPS) نامیده می شوند . هر حالتی که بتواند با بله / نه ، (خوب / بد) یا 0/1 نمونه‌برداری شود به عنوان متغیردوتایی شناخته می شود . در زیر نمونه های زیادی از متغیرهای دوتایی ذکر شده که ممکن است در طرح تجاری یافت شود :
، اگر یک طرح مراقبت سلامتی جدید پذیرفته شود .
، اگر پذیرفته نشود .
، اگر مجلس خط B برای تولید نمونه های کولس به کار رود .
، اگر به کار نرود .
، اگر یک ایستگاه پلیس جدید در پایین شهر شناخته شود .
، اگر ساخته نشود .
، اگر تولید یک اجناس به عنوان نوع «خوب» قابل قبول باشد .
، اگر به این صورت نباشد .
، اگر بزرگراه 50 ، در سفر بین ددو شهر به کار رود .
، اگر به این صورت نباشد .
، اگر محدودیت خاصی باشد .
، اگر آن محدودیت نیاز نباشد .
، اگر یک گیاه جدید در گاری هندوستان پرورش یابد .
، اگر به این صورت نباشد .
، اگر سومین انتقال به کار رود .
، اگر به این صورت نباشد .
همانطور که این مثالها نشان می دهند ، خیلی ساده است که متغیر دوتایی را به عنوان یک تحقیق در نظر می گیریم یعنی این که این تحقیق قبول شده ، یعنی این تحقیق قبول نشده است . با تفاسیر داده شده در مورد متغیرها ، اکنون ما چند نوع اجبار را مورد آزمایش قرار می دهیم ، که تحت بررسی شورای شهر در «سالم اورگون» می باشد .
شورای شهر سالم :
در آخرین جلسه مالیاتی سال ، شورای شهر «سالم» ، طرح هایی مختص سرمایه باقی مانده در بودجه یک سال ارائه کرده است . نه تحقیق تحت بررسی کامل یک سال قرار گرفته اند . برای آمارگیری حمایت مردم از تحقیق های مختلف ، پرسشنامه هایی به طور تصادفی به رای دهندگان در کل شهر فرستاده می شود و از آنها خواسته می شود که تحقیق ها را به ترتیب از خوب به بد طبقه بندی کنند . ( بالاترین تقدم ، پایین ترین تقدم ) شورا امتیازها را بر اساس 500 پاسخی که دریافت می کند تطبیق می دهد .با این وجود هیئت شورا مکرراً متذکر می شود که تنها به نتایج پرسش‌نامه‌ها اکتفا نمی کند . آنها در حالیکه تخصیص های بودجه را تهیه می کنند ، مسائل دیگر را هم محاسبه می کنند . برای تخمین هزینه هر تحقیق ، میزان تخمینی ثابت هر شغل جدید باید فراهم شده ، و تطبیق امتیاز پرسشنامه ها در جدول 3-5 خلاصه شده است.

هدف هیئت شورا بالا بردن حمایت کل رای دهندگان دریافت شده (داشتن پرسشنامه به عنوان مدرک) و دادن محدودیت ها و مطالب قابل توجه دیگر هیئت شورا می باشد که به شرح زیر است :
• 900.000 دلار باقیمانده در صندوق
• نیازهای هیئت شورا برای ایجاد حداقل 10 شغل جدید .
• با وجودیکه جلوگیری از جنایت ، برای مردم از اهمیت بیشتری برخوردار است ، هیئت شورا برای بخش های دیگر خدمات مردم باید به خوبی عمل کند . بنابراین امید می رود که در بیشتر تحقیق های مربوط پلیس سرمایه گذاری شود .
• هیئت شورا مایل است که تعداد وسایل نقلیه اضطراری شهر را افزایش دهد ولی اکنون با توجه به مطالب دیگر ، فقط یکی از دو تحقیق در مورد وسایل نقلیه اضطراری باید سرمایه گذاری کند . پس دو ماشین پلیس و دو ماشین آتش نشانی هم باید خریداری شود .
• هیئت شورا معتقد است در صورتیکه تصمیم بگیرد نزولهای سرمایه را از برنامه‌های ورزشی در مدارس برگرداند ، نزولهای سرمایه از برنامه های موسیقی هم باید برگردانده شوند و برعکس .
• با عقد قرارداد ، هر سرمایه اضافی مدرسه قبل از اینکه تحقیقات جدید مدرسه انجام شود باید به نزولهای قبلی برگردانده شود . بنابراین هم سرمایه های ورزشی و هم سرمایه های موسیقی قبل از اینکه تجهیزات جدید کامپیوتر خریداری شود ، باید برگردانده شوند . هر چند برگرداندن سرمایه های ورزشی و موسیقی ، دلالت بر این ندارد که کامپیوترهای جدید خریداری خواهند شد . هیئت شو.را هم مایل است به مردم مسائلی از لحاظ مالی نسبت به آنها مسئول است را ارائه دهد . مثل مسائل مربوط به سلامتی ، علائق در رشد مشاغل و نیازهای تحصیلی شهر «سالم».
برای نشان دادن مسئولیت پذیری مالی :
• هیئت شورا مایل است حداقل 250.000 دلار به بودجه سال بعدی انتقال دهد . بنابراین برای بقیه سال حداکثر اینقدر باقی می ماند :
• 650.000$ = 250.000$ - 900.000$ .
برای نشان دادن ارتباط بین سلامت عموم :
• هیئت شورا مایل است حداقل در سه تحقیق آتش سوزی و پلیسی سرمایه گذاری کند .
• آنها امیدوارند هفت افسر پلیس جدید اضافه کنند .

برای نشان دادن علائق در رشد مشاغل :
• هیئت شورا مایل است حداقل 15 شغل جدید تمام وقت فراهم آورد .
برای اثبات حساسیت مطالب تحصیلی :
• هیئت شورا مایل است که در هر سه تحقیق تحصیلی سرمایه گذاری کند .
اعضای هیئت شورا تشخیص می دهند که سرمایه کافی برای تحقق این پنج هدف موجود نمی باشد ، ولی آنها احساس می کند که اگر حداقل سه تحقیق از پنج تحقیق قابل قبول باشد ، رای دهندگان با نظر مساعدی به آن توجه می کنند .

راه حل
هیئت شورای شهر سالم باید تحقیق هایی را برای سرمایه گذاری انتخاب کنند . هدفش تشخیص ارتباطات و محدودیت هایی است که قبلاً ذکر شده است . یک سری تحقیق هایی که حمایت عموم مردم را از طریق پرسش نامه های داده شده ، بالا می‌برند .


ترکیبات و نظریه‌ های گراف

در این مقاله می خواهیم به دو مبحث بزرگ از ریاضیات گسسته با نامهای ترکیبات و نظریه‌ی گراف بپردازیم که در این دوران شاهد پیشرفت چشمگیر آنها می باشیم
دسته بندی ریاضی
فرمت فایل doc
حجم فایل 268 کیلو بایت
تعداد صفحات فایل 18
ترکیبات و نظریه‌ های گراف

فروشنده فایل

کد کاربری 1024

ترکیبات و نظریه‌ های گراف


در این مقاله می خواهیم به دو مبحث بزرگ از ریاضیات گسسته با نامهای ترکیبات و نظریه‌ی گراف بپردازیم که در این دوران شاهد پیشرفت چشمگیر آنها می باشیم .
این دو مبحث بدلیل آنکه دارای کاربرد وسیعی در علم کامپیوتر و برنامه سازی های کامپیوتری می‌باشند حائز اهمیت فراوان می باشند .
1-ترکیبات :
شاید در نگاه اول ترکیبات یک بخش معماگونه و سطحی از ریاضیات به نظر برسد که دارای کاربرد چندانی نبوده و فقط مفهوم های انتزاعی را معرفی می کند ولی این شاخه از ریاضیات دارای گستره‌ی وسیع بوده و دارای شاخه های زیادی نیز می باشد .
ابتدا به مسأله ای زیبا از ترکیبات برای آشنا شدن بیشتر با این مبحث ارائه می کنیم .
سوال : یک اتاقی مشبک شده به طول 8 و عرض 8 داریم که خانه‌ی بالا سمت چپ و خانه‌ی پایین سمت راست‌ آن حذف شده است (مانند شکل زیر)

حال ما دو نوع موزاییک داریم . یکی 2*1 ( ) و دیگری 1×2 ( ) سوال این است که آیا می توان این اتاق را با این دو نوع موزائیک فرش کرد .
احتمالاً اگر شخص آشنایی با ترکیبات نداشته باشد می گوید «آری» و سعی می کند با کوشش و
خطا اتاق را فرش کند ولی این کار شدنی نیست ؟! و اثبات جالبی نیز دارد .
اثبات : جدول را بصورت شطرنجی رنگ می کنیم مانند شکل زیر :
حال با کمی دقت متوجه می شویم که هر موزائیک یک خانه از خانه های سیاه و یک خانه از خانه‌های سفید را می پوشاند یعنی اگر قرار باشد که بتوان با استفاده از این موزائیک ها جدول پوشانده شود باید تعداد خانه های سیاه با تعداد خانه های سفید برابر باشد ولی این گونه نیست زیرا تعداد خانه های سفید جدول برابر 32 و تعداد خانه های سیاه برابر 30 می باشد . در نتیجه این کار امکان امکان پذیر نیست .

این مسأله مربوط به مسائل رنگ آمیزی در ترکیبات بوده که دارای دامنه‌ی وسیعی از مسائل دشوار و پیچیده می باشد در زیر چند نمونه از مسائل آسان و سخت را بیان می کنیم .
1-ثابت‌کنید هیچ جدولی را نمی توان به موزائیک هایی به شکل و پوشاند .
(راهنمایی: ثابت کنید حتی سطر اول جدول را هم نمی توان پوشاند)
2-ثابت کنید یک مهره‌ی اسب نمی تواند از یک خانه‌ی دلخواه صفحه‌ی n*4 شروع به حرکت کند و تمام خانه ها را طی کند .
3-یک شبکه‌ی n*m از نقاط داریم یک مسیر فراگیر مسیری است که از خانه‌ی بالا سمت چپ
شروع به حرکت کرده و از همه‌ی خانه هر کدام دقیقاً یک بار عبور کند و به خانه‌ی سمت راست پایین برود ثابت کنید شرط لازم و کافی برای وجود یک مسیر فراگیر در شبکه‌ی n*m آن است که لااقل یکی از m یا n فرد باشد (مرحله‌ی دوم المپیاد کامپیوتر ایران) در شکل زیر یک مسیر فراگیر را برای جدول 5*4 می بینیم .

B
4-ثابت کنید شرط لازم کافی برای پوشش جدول n*m با موزائیک های 2*1 یا 1*2 آن است که یا m یا n زوج باشند .
حال می‌خواهیم یک مبحث مهم از ترکیبات به نام استقراء را معرفی کنیم.
استقراء بعنی رسیدن ازجزء به کل و هم ارز است با اصل خوشترتیبی زیر مجموعه‌ها( اصل خوشتربینی بیان می‌کند که هر مجموعه متناهی از اعداد عضوی به نام کوچکترین عضو دارد).
برای اثبات حکمی به کمک استقراء لازم است:
1) حکم را برای یک پایة دلخواه(که معمولاً کوچک باشد) ثابت کنیم.
2) حکم را برای یک k دلخواه فرض می‌گیریم.
3) به کمک قسمت 2 حکم را برای ثابت می‌کنیم.
بسیاری از گزاره‌ها به کمک این استقراء که در ظاهر ساده است ثابت می‌شود:
یک مثال ساده:
ثابت کنید: .
برای که داریم و حکم برقرار است:
فرض کنیم برای درست باشد حکم را برای ثابت می‌کنیم داریم:

که این قسمت طبق فرض بردار می‌باشد
و برای نیز حکم مسأله برقرار است.
یک مثال سخت:
این سئوال در المپیاد کامپیوتر امسال مطرح شده و ما فقط یک قسمت آنرا بطور خلاصه بیان می‌کنیم.
سئوال: در روز A دارای تعداد مجموعه می‌باشد بطوریکه هیچ مجموعه‌‌ای زیرمجموعة دیگری نیست یعنی اکر )
حل شایان در روز B می‌آید از روی مجموعه‌های A تمام مجموعه‌هایی را نمی‌سازیم که دارای دو شرط زیر می‌باشند:
1- هر مجموعه‌ای دلخواه در روز B با تمام مجموعه‌ها در روز A اشتراک دارد.
2-اگر از یک مجموعة دلخواه در روز B یک عضو را حذف کنیم آنگاه دیگر شرط 1 برقرار نباشد( که به این شرط، شرط مینیمالی می‌گوئیم:
حال فراز در روز C از روی مجموعه‌های B تمام مجموعه‌هایی با دو شرط بالا را می‌سازد ثابت کنید ( یعنی تمام مجموعه‌های روز اول در روز سوم نیز تولید شده‌اند)
اثبات: ابتدا لم زیر را ثابت می‌کنیم:
لم: به ازای هر مجموعة دلخواه در روز A مثل در روز B n تتا مجموعه وجود دارند بطوریکه هر کدام از آنها دقیقاً یکی از اعضای را دارند( ممکن است اعضای دیگری نیز داشته باشند ولی هر کدام دقیقاً یکی از را دارند.)
اثبات لم: با استقراء روی تعداد مجموعه‌های روز اول حکم را ثابت می‌کنیم. برای یک مجموعه در روز A وضعیت مجموعه‌ها در روزهای C,B,A مشخص شده‌اند:


مقاله تحلیل داده ها

برای تعیین رقمهای با معنا ، رقمها را از سمت چپ به راست می شماریم صفرهایی ک قبل از اولین رقم سمت چپ نوشته می شوندجزء رقمهای با معنا به حساب نمی آیند
دسته بندی ریاضی
فرمت فایل doc
حجم فایل 267 کیلو بایت
تعداد صفحات فایل 35
مقاله تحلیل داده ها

فروشنده فایل

کد کاربری 1024

تحلیل داده ها


1- ارقام با معنی:
برای تعیین رقمهای با معنا ، رقمها را از سمت چپ به راست می شماریم. صفرهایی ک قبل از اولین رقم سمت چپ نوشته می شوندجزء رقمهای با معنا به حساب نمی آیند این صفرها به هنگام تبدیل یکاها ظاهر می شوند و تبدیل یکاها نباید تعداد رقمهای با معنا را تغییر دهد
12/6 : سه رقم بامعنی
0010306/0 :پنج رقم با معنی که اولین رقم با معنی یک است.صفرهای قبل از یک با معنی نیستند
20/1 : سه رقم با معنی در صورتیکه صفر با معنی نباشد عدد باید به صورت2/1 نوشته شود
38500 : سه رقم با معنی، چیزی برای اینکه نشان دهد صفرها با معنی هستند یا نه مشخص نیست می توان این ابهام را با نوشتن بصورتهای زیر برطرف کرد:
: هیچکدام از صفرها با معنی نیستند
: یکی از صفرها با معنی است
:هر دو صفر با معنی است
m 040/0 = Cm0 /4=mm40 که هر سه دارای سه رقم با معنی هستند.
2- گرد کردن اعداد:
اگر بخواهیم ارقام عدد 3563342/2 را به دو رقم کاهش دهیم، این عمل را گرد کردن عدد می نامند. برای این منظور باید به رقم سوم توجه کنیم بدین صورت که اگر قم سوم بزرگتر یا مساوی5 باشد رقم دوم به طرف بالا گرد می شود و اگر رقم سوم کوچکتر از 5 باشد رقم دوم به حال خود گذاشته می شود
4/1 3563342/2
62700 62654
108/0 10759/0
3- محاسبات و ارقام با معنی:
می خواهیم سطح مقطع یک استوانه به قطر6/7 را بدست آوریم:

اشکال کار: اگر دقت کنیم محاسبات تا 10 رقم با معنی است اگر از کامپیوتری تا 100 رقم استفاده می کردیم چه؟ در صورتیکه قطر کره تا دو رقم با معنی است بنابراین در اینگونه موارد به نکات زیر توجه می کنیم:
توجه: اگر مجبورید محاسبه ای را که در آن خطای مقادیر مشخص نیست انجام دهید و می بایستی فقط با ارقام با معنی کار کنید به نکات زیر توجه کنید:
الف ) زمانی که اعداد را در هم ضرب و یا بر هم تقسیم می کنید: عددی که با کمترین ارقام با معنی در محاسبه است را شناسایی کنید به حاصل محاسبه همین تعداد ارقام با معنی نسبت دهید
چون 7/3 با دو رقم با معنی است


ب ) زمانی که اعداد را با هم جمع و یا از هم کم می کنید: تعداد ارقام اعشاری عدد حاصل از محاسبه را برابر تعداد کمترین ارقام اعشاری اعداد شرکت داده شده در محاسبه گرد کنید
کمترین اعشار مربوط به1/13 است


مثال: شعاع یک کره5/13 سانتیمتر برآورد شده است. حجم ایمن کره را بدست آورید؟
جواب:
مثال: چگالی کرهای به جرم44/0 گرم و قطر76/4 میلی متر را بدست آورید؟

4- متغیرهای وابسته و مستقل:
به کمیتی که مقدار آن را می توانیم تنظیم نمائیم و یا در طول آزمایش به دلخواه تغییر داده می شود، متغیر مستقل گفته می شود و آنرا به عنوان مختصهx در نمودار می گیریم.
به کمیتی که بر اثر تغییر در متغیر مستقل پیدا می کند، متغیر وابسته گفته می شود و به عنوان مختصهy در نمودار گرفته می شود.
مثلا در آزمایش انبساط طولی میله در اثر حرارت دما متغیر مستقل و طول میله متغیر وابسته می باشد

5- خطا :
تمام اندازه گیریها متاثر از خطای آزمایش هستند.منطور این است که اگر مجبور با انجام اندازه گیریهای پیایی یک کمیت بخوصوص باشیم، به احتمال زیاد به تغییراتی در مقادیر مشاهده شده برخورد خواهیم کرد. گرچه امکان دارد بتوانیم مقدار خطا را با بهبود روش آزمایش و یا بکارگیری روشهای آماری کاهش دهیم ولی هرگز نمی توانیم آن را حذف کنیم.
1-5- خطای دقت وسایل اندازه گیری :
هیچ وسیله اندازه گیری وجود ندارد که بتواند کمیتی را با دقت بینهایت اندازه گیری نماید.بنابراین نادیده گرفتن خطای وسایل اندازه گیری در آزمایش اجتناب ناپذیر است.
اگر اندازه کمیتی که اندازه می گیریم با گذر زمان تغییر نکند، مقدار خطا را نصف کوچکترین درجه بندی آن وسیله در نظر می گیریم.
مثال:
متر کوچکترین درجه mm1 = مقدار خطا
پس اندازه گیریی mm54 را بصورت بیان می کنیم
دما سنج کوچکترین درجه ºC2 = مقدار خطا
پس اندازه گیریی ºC60 را بصورت بیان می کنیم
2-5- خطای خواندن مقدار اندازه گیری:
3-5- خطای درجه بندی وسایل اندازه گیری:
تعریف خطای مطلق: اگر خطا را با همان یکای کمیت اندازه گیری شده بیان نمائیم، به این خطا، خطای مطلق کمیت اندازه گیری گفته می شود
تعریف خطای نسبی: اگر خطا بصورت کسری باشد، به این کسر، خطای نسبی مقدار کمیت اندازه گیری شده گفته می شود
4-5- ترکیب خطاها :
ممکن است در آزمایشی نیاز به یافت چند کمیت، که باید آنها را بعداُ در معادله ای وارد کنیم، داشته باشیم برای مثال ممکن است جرم و حجم جسمی را اندازه بگیریم و سپس نیاز به محاسبه چگالی داشته باشم، که با رابطه زیر تعریف می شود: سوال اینجاست که چه ترکیبی از خطاهای مقادیر m وV ] اندازه خطای را بدست می دهد. بدین منظور سه روش زیر ارائه داده می شود:
الف) روش اول: این روش را با دومثال زیر توضیح می دهیم:
مثال1: قطر سیمی با مقطع دایره ای برابر است با: مطلوب است اندازه سطح سیم و مقدار خطای آن؟
جواب:

مثال2: در یک آزمایش الکتریکی، جریان جاری شده در یک مقاومت برابر با و ولتاژ دو سر مقاومت اندازه گیری شد.اندازه مقاومت و مقدار خطای مقاومت را بدست آورید؟