فروشگاه فایل 4030

بزرگترین وبلاگ فروش فایل

فروشگاه فایل 4030

بزرگترین وبلاگ فروش فایل

تحقیق روش گرادیان

در گذشته تعداد زیادی مدلهای مختلف با استفاده از مطالب مشاهده شده در جهت برآورد یا تنظیم ماتریسهای OD پیشنهاد شده بود
دسته بندی ریاضی
فرمت فایل doc
حجم فایل 168 کیلو بایت
تعداد صفحات فایل 19
تحقیق روش گرادیان

فروشنده فایل

کد کاربری 1024

روش گرادیان


خلاصه :
در گذشته تعداد زیادی مدلهای مختلف با استفاده از مطالب مشاهده شده در جهت برآورد یا تنظیم ماتریسهای OD پیشنهاد شده بود . در حالیکه این مدلها از نظر فرمولاسیون ریاضی متفاوت بودند و از نظر تفسیر نیز متفاوت بودند . تمامی آنها در این حقیقت که استفاده از آنها برای شبکه های در اندازه واقعی مشکل است مشترک بودند . این ناشی از پیچیدگی محاسبات که در آنها درگیر است و احتیاج برای نرم افزار خیلی تخصصی برای انجام دادن آنها است .
در این مقاله ما یک مدل بر پایه گرادیان که قابل اعمال در شبکه های در بعد بزرگ است ارائه می کنیم . از نظر زیاضی مدل به شکل یک مسئله حداقل سازی محدب در جائیکه توسط دنبال کردن جهت نزولی ترین شیب ما می توانیم تضمین کنیم که ماتریس OD اصلی بیش از حد لازم تغییر پیدا نکرده است ، فرموله شده است .
ما نمایش می دهیم که چگونه این تنظیم مدل درخواستی می تواند بدون احتیاج به گسترش هیچگونه نرم افزار جدید اجرا شود . بلکه تنها توسط استفاده از اقلام موجود از یک بسته برنامه ریزی حمل و نقل قابل اجرا خواهد بود . از آنجائیکه یک قلم از مراحل تنظیم اساساً در دو انتخاب تعادلی در شبکه م.ورد نظر وجود دارند ، این روش حتی در شبکه ها و ماتریس ها در مقیاس بزرگ قابل اعمال است . تا به اینجا ، مدلها بطور موفقی در چندین پروژه ملی و شهری در سوئیس ، سوئد و فنلاند با استفاده از شبکه هایی تا حد 522 منطقه ترافیکی و 12460 سفر اعمال شده است . برخی از نتایج این مطالعه نشان داده خواهد شد .
کلمات کلیدی : برآورد ماتریس O-D ، انتخاب تعادلی ، روش گرادیان .

مقدمه :
تقریباً در تمامی کاربردهای برنامه ریزی حمل و نقل ، اطلاعات ورودی که بدست
می آید نشان از همه چیز مشکل تر و گران تر است . ماتریس درخواست مبدا - مقصد است . از آنجائیکه اطلاعات درخواستی بطور مستقیم قابل مشاهده نیست ، باید توسط تحقیقات دقیق و گران قیمت جمع آوری شود که درگیر با مصاحبه های در منزل و در جاده ها یا روشهای پیچیده علامت گذاری یا نشانه گذاری است . برعکس حج سفرهای مشاهده شده به آسانی و با دقت قابل قبولی توسط شمارش در نقاط خاصی از سفر یا دستی یا اتوماتیک با استفاده از دستگاههای شمارنده مکانیکی یا القایی قابل بدست آمدن است . بنابراین تعجب آور نیست که مقدار چشم گیری از تحقیقات در جهت بررسی احتمال برآورد یا بهبود یک ماتریس درخواست مبدا - مقصد با
حجم های مشاهده شده روی سفرهایی در شبکه مورد نظر انجام می شود .
تعداد زیادی از مدلها در گذشته پیشنهاد شده است . Vanvilet - (1980) willumsen , vanzuylen و (1981)willumsen - (1982)Nguyen - Vanzuylen و Branston (1982) - (1987)spiess . این مدلها در حالیکه خیلی از لحاظ تئوریکی جالب هستند ، تاکنون از لحاظ عملی ارتباط کمی داشته اند . این ناشی از زمان زیادی است که صرف محاسبات می شود و کاربرد در مسائل در بعد کوچک است . آنچه که ما خیلی خوب می دانیم این است که هیچکدام از این روشها بطور موفق به شبکه های در ابعاد وسیع و بزرگ با صدها منطقه ترافیکی و هزاران سفر شبکه ای اعمال نشده است . اکثر این روشهای سنتی به شکل مسائل اپتیمم سازی که در آنها تابع هدف هماهنگ با برخی توابع فاصله بین یک ماتریس درخواست اولیه و درخواست نتیجه شده g قابل فرموله شدن هستند . سپس مسائل محدود کننده در جهت نزدیک کردن حجم های انتخاب شده به حجم های مشاهده شده در نقاط شمارش استفاده می شوند . (توجه داشته باشید که برخی فرمولاسیون ها VanZuylen و (1982)Branston مسائل محدود کننده در آنها دخیل می شوند و بنابراین بعنوان اصطلاحات اضافی در توابع هدف ظاهر می شوند . )
در بخشهای زیر ما یک مدل جدید که مناسب برای کاربردهای در مقیاس بزرگ است را تشریح می کنیم . ما نشان می دهیم که چگونه این مدل بدون احتیاج به گسترش هیچگونه برنامه جدیدی قابل اجرا است ، اما به جای آن با استفاده از نسخه استاندارد از بسته برنامه ریزی حمل و نقل EMME/2 استفاده می شود . در نهایت ما نتایج برخی کاربردهای در مقیاس شهری و ملی را که در آنها مدل جدید ما اخیراً استفاده شده را خلاصه می کنیم .

روش گرادیان :
در این مقاله یک نوع جدید از مدلها پیشنهاد شده است . همچنین بعنوان یک مسئله اپتیمم سازی فرموله شده است . اما در اینجا تابع هدف برای اینکه حداقل سازی شود آنرا در فاصله بین حجمه ی مشاهده شده و انتخاب شده در نظر گرفته ایم . آسان ترین تابع از این نوع جذر جمع اختلاف ها ، که به مسئله حداقل سازی هدایتمان می کند می باشد .